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Abstract. In this paper we employ a discrete-diffusion modeling framework

to examine a system inspired by the nano-ecology experiments on the bac-
terium Escherichia coli reported upon in Keymer et al. (2006). In these

experiments, the bacteria inhabit a linear array of 85 “microhabitat patches

(MHP’s)”, linked by comparatively thinner corridors through which bacteria
may pass between adjacent MHP’s. Each MHP is connected to its own source

of nutrient substrate, which flows into the MHP at a rate that can be con-

trolled in the experiment. Logistic dynamics are assumed within each MHP,
and nutrient substrate flow determines the prediction of the within MHP dy-

namics in the absence of bacteria dispersal between patches. Patches where
the substrate flow rate is sufficiently high sustain the bacteria in the absence

of between patch movement and may be regarded as sources, while those with

insufficient substrate flow lead to the extinction of the bacteria in the within
patch environment and may be regarded as sinks. We examine the role of dis-

persal in determining the predictions of the model under source-sink dynamics.

1. Introduction. This paper is inspired by the nano-ecology experiments on the bacterium Es-
cherichia coli by Keymer et al. reported upon in [6] and the subsequent chemotactic reaction-

diffusion model developed and analyzed in [3] prompted by the experiments. In the experiment,
Keymer et al. fabricated a one-dimensional array of 85 “microhabitat patches (MHP’s)” for the
E.coli which are linked by corridors. The corridors allow the bacteria to move from one MHP to

the next, and are sufficiently more narrow than the MHP’s that the MHP’s may be viewed as the

“nodes” in the overall environment. Each MHP is connected to feeding channels through which
a controllable amount of nutrient passes. Specifically, an individual MHP has dimensions 100µm

(length) ×100µm (width) ×30µm (depth). By comparison, a corridor connecting two adjacent

MHP’s is 50µm (length) ×5µm (width) ×30µm (depth). Each MHP is separately attached via
two feeding channels to the nutrient source. Each channel has 5 “nanoslits” of dimensions 20µm

(length) ×15µm (width) ×200nm (depth) through nutrient and waste but not bacteria may pass,
and the device is such that each “nanoslit” may kept open or closed. In [6], the three primary pa-

rameters describing the overall bacterial habitat are the “coupling strength” or flow rate through

the corridors, the degree of openness of the feeding channels, and the carrying capacity of the
individual MHP’s.

2010 Mathematics Subject Classification. Primary: 92D25; Secondary: 34D99.

Key words and phrases. Mathematical Biology.
Research of RSC was supported in part by the National Science Foundation Awards DMS11-

18623 and DMS 15-14752.
∗ Corresponding author: RSC.

1



2 A TRIDIAGONAL PATCH MODEL OF BACTERIA

In [3], the authors develop a reaction-diffusion-advection model based on the experiments reported
in [6], while also taking into account that bacteria often aggregate on the basis of “self-attraction

mediated by the excretion of chemoattractants”. Their derivation leads to a quasilinear parabolic
system for the densities of bacteria and nutrient substrate in a one dimensional habitat, in which

bacteria self-aggregate and aggregate in response to nutrient substrate abundance.

In this paper, our aim is to model the situation described in [6] by means of a discrete-diffusion
(or patch-island) model for the densities of bacteria and nutrient that also can incorporate bacterial

self-aggregation and/or bacterial cueing upon nutrient substrate abundance. We believe that this
approach allows us to capture the discrete manner in which micro-habitat patches are embedded
in the overall “landscape” that is true to the spirit of [6], while also capturing aggregative behavior

as highlighted in [3]. Taking account of the linear structure of the fabricated habitat in [6] leads

to “nearest neighbor” dispersal between patches, i.e., bacteria from the ith micro-habitat patch
are constrained so as to move directly only to patches i − 1 and i + 1. Consequently, our patch

model takes on a generalized tridiagonal structure. Indeed, the purely diffusive aspect of dispersal
in our model by itself would lead to a cooperative tridiagonal model. The asymptotic predictions

([4] and [8]) of such models are particularly clean, predicting that all orbits tend to equilibria, and

these facts inform our analysis to a degree. On the other hand, our modeling and analysis are
also informed by several other factors. The most interesting scenarios in the model come when

some MHP’s are net favorable locales while others are not. In such cases, it is reasonable to think

in terms of source-sink population dynamics and of keen interest to determine if the rescue effect
arising from dispersal from favorable patches to unfavorable ones promotes persistence throughout

the landscape. Consequently, movement rates through corridors are key to a mathematical analysis

of the model in much the way that diffusion rates would be in a reaction-diffusion setting. Indeed,
discrete diffusion models are often viewed as spatially implicit surrogates for reaction-diffusion

models and there is a general expectation that results in the reaction-diffusion setting have parallels
in the discrete diffusion framework. Here, in particular, we find strong parallels to reaction-

diffusion models with indefinite weight functions in reflecting or closed habitats ([1]; [7]). Moreover,

our model is also complicated by the aggregative aspects of dispersal that we include. Specifically,
when we incorporate aggregative dispersal into the discrete diffusion framework, we obtain a

vector field that is Lipschitz continuous but not continuously differentiable. So we can invoke the

existence and uniqueness of solutions to initial value problems for first order systems of ordinary
differential equations to guarantee that we have a well-defined dynamical system. However, we

cannot directly apply the Hartman-Grobman Theorem to analyze stability of equilibria. We

circumvent this obstacle in our asymptotic analysis by drawing upon results from persistence
theory ([2]), specifically the Acyclity Theorem and practical persistence estimates.

Two further aspects of our model merit comment at this point. First of all, our patch model
has the feature that at equilibrium, if the bacteria density is zero in some patch, it is zero in all

patches. That such is the case is an inherent property of the modeling framework. Indeed, the

discrete diffusion component of dispersal leads to an “irreducible” coupling of the patches unless
some corridor is completely closed, in which case we have two entirely separated landscapes. This

feature is analogous to the maximum principle in a reaction-diffusion context. However, one

should note that bacteria density in unfavorable patches “far away” from a source patch would be
expected to be arbitrarily low and we will illustrate this point via numerical calculations.

The second feature of our model that we should note concerns the dynamics within a single

patch in the absence of dispersal between patches. Like [6] and [3], we posit logistic dynamics for
the bacteria. The traditional “r-K” form of the logistic model, used in both [6] and [3] has

dx

dt
= rx

(
1−

x

K

)
, (1)

where x is population density, r is the intrinsic growth rate and K is the carrying capacity of the

habitat. In [6] and [3] and in our model, the bacterial density is linked to the nutrient density

through the dependence of r on nutrient density. In unfavorable patches r will be negative or zero.
In such case, there is no mechanism for growth and one should expect that the bacterial density

tends toward zero. However, if r < 0 and x > K, dx/dt > 0. For this reason, we will write the

logistic equation in the form
dx

dt
= rx− αx2, (2)

where α > 0. When r > 0, (2) is equivalent to (1) with K = r/α. When r ≤ 0, x(t) tends

to zero as t → ∞ for all nonnegative x(0). This alteration has a significant ramification for the

coupled bacteria-nutrient interaction within a single patch. Namely, there are only two equilibrium



A TRIDIAGONAL PATCH MODEL OF BACTERIA 3

configurations possible for the bacteria-nutrient system as opposed to the three in [6]. The first
possibility is that the nutrient influx rate is too low relative to the component d of r that represents

the natural mortality of the bacteria and the bacteria population vanishes and the nutrient is at
its input value. The other is that nutrient influx is high enough relative to d for the bacteria

to survive and the bacteria density is at the r/α value determined by the balance of resource

availability and natural mortality. The third equilibrium in [6] results from having a nutrient level
in which r = 0. In this event, damped oscillatory behavior leading to this equilibrium is observed

in [6]. By employing (2) in place of (1) we do not see such behavior in the predictions of our
model.

The remainder of the paper is structured as follows. We discuss within patch dynamics in

section 2, leading to the development of the multi-patch model in section 3. We present our

mathematical analysis of the model in sections 4 and 5. In section 4, we consider general discrete
diffusion rates, whereas in section 5, we assume diffusion rates are equal. We discuss the results

of our numerical investigations in section 6. We end by drawing some biological conclusions in
section 7.

2. The Single Patch Model. As noted in the Introduction, the single patch dynamics of the

system in [6] and [3] are described by

dp

dt
= (µs− d)p

(
1−

p

K

)
ds

dt
= λ(1− s)− εµsp

(3)

where p is the density of the bacteria, s is the density of the substrate that the bacteria feed upon,

µ is the bacterial growth rate under the maximal sustainable substrate level and d is bacterial

mortality. K represents the carrying capacity of the habitat, λ is the flow rate through the feeding
corridor, and ε is a conversion factor from the consumption of substrate to the birth of bacteria.

In this formulation, ε > 1. As discussed in the Introduction, we modify (3) to (4) below to
allow for the possibility that µs − d can be negative. In so doing, K will no longer represent

carrying capacity. The other parameters retain the same meanings as in (3). We make one further

adjustment that will be significant once we are in the multi-patch setting. Namely, as scaled by
1− s, the maximum sustainable density for the substrate is one. As described in [6], the degree of

openness of the feeding channels is adjustable. As a result, we want to allow a maximal sustainable

density below one in that case. We use the parameter β ∈ (0, 1] for this purpose. Consequently,
our single patch model is expressed as

dp

dt
= (µs− d)p−

p2

K
ds

dt
= λ(β − s)− εµsp.

(4)

To analyze (4), observe first that (4) has either one or two equilibria. To this end, note that the
substrate density s is a lower solution to

dz

dt
= λ(β − z),

which converges over time to β. If µβ − d < 0, then the bacterial density is a lower solution to

dw

dt
= (µβ − d)w,

for t ≫ 0 and consequently (p, s) → (0, β) as t → ∞. A modified argument holds when µβ−d = 0.
So now suppose µβ − d > 0. An equilibrium (p∗, s∗) with p∗ ̸= 0 satisfies

p∗ = K(µs∗ − d),

and

p∗ =
λ(β − s∗)

εµs∗
,

so that s∗ must satisfy

εµ2K(s∗)2 + (λ− εµKd)s∗ − λβ = 0 (5)
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so that

s∗ =
(εµKd− λ) +

√
(εµKd− λ)2 + 4λβεµ2K

2εµ2K

is the only positive root of (5). Setting f(s) = εµ2Ks2 + (λ− εµKd)s− λβ, we have f(0) = −λβ

while f(β) = εµKβ(µβ − d) > 0 so that s∗ < β. Additionally, f(d/µ) = λ(d/µ − β) < 0 so that
d/µ < s∗ < β and 0 < p∗ < K(µβ − d). In particular, there is a unique componentwise positive
equilibrium to (4).

It is easy to check that the Jacobian matrix for an equilibrium to (4) is[
µs− d− 2p

K
µp

−εµs −λ− εµp

]
which is [

µβ − d 0
−εµβ −λ

]
when (p, s) = (0, β). Consequently (0, β) is a saddle point unstable in the p direction. Since

ds

dt
≤ λ(β − s)

dp

dt
≤ (µβ − d)p−

p2

K

for t sufficiently large, orbits to (4) with p(0) > 0 and s(0) > 0 are drawn into the positively
invariant rectangle

D = {(p, s)|0 ≤ p ≤ K(µβ − d), 0 ≤ s ≤ β}.

In particular, (p∗, s∗) lies within the rectangle. At (p∗, s∗) the Jacobian matrix simplifies to[
− p∗

K
µp∗

−εµs∗ −λβ
s∗

]
Thus the determinant of the Jacobian matrix at (p∗, s∗) is positive and the trace is negative, so

that (p∗, s∗) is locally asymptotically stable. Setting

B =
1

ps
, F = (µs− d)p−

p2

K
, and G = λ(β − s)− εµps

one may calculate that

∂(BF )

∂p
+

∂(BG)

∂s
< 0

in the interior of D. Consequently, we have by Dulac’s Criterion and Poincaré-Bendixson theorem
that (p∗, s∗) is in fact globally asymptotically stable relative to orbits with p(0) > 0, s(0) > 0.

3. The Multi-patch Model. Here we take a discrete-diffusion (patch island) approach to model

dispersal between adjacent patches, which is linear, augmented by a discrete version of nonlinear
chemotactic aggregation, where the advection is biased toward higher conspecific density or higher

substrate concentration. Both effects are included in the reaction-advection-diffusion model in [3]

which mirrors discussion in [6]. The linear level dispersal is standard in models of this type. To
model chemotactic self-aggregation, we will posit a tendency for the bacteria to go from, say, patch

i to patch (i+1) whenever the bacterial density is higher in the patch (i+1) than in the patch i.
Moreover, as the simplest quantitative representation, we will assume this tendency is proportional

to the difference between the densities in the two patches. As such, a term of the form

γpi max{pi+1 − pi, 0}

is subtracted from dpi/dt and added to dpi+1/dt, where pi is the bacterial density in patch i. The
corresponding term in modeling chemotactic advection toward higher substrate concentration is

νpi max{si+1 − si, 0}

where si is substrate concentration in patch i. Once bacteria move from one patch to another,

they are identified as residents of the new patch, so that local population dynamics in patch i only
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involve pi and si. Our analysis will consider the case of an arbitrary number of patches (MHP’s).
The full model takes the form

dp1

dt
= −D21p1 +D12p2 − γp1 max{p2 − p1, 0}+ γp2 max{p1 − p2, 0}

− νp1 max{s2 − s1, 0}+ νp2 max{s1 − s2, 0}+ (µs1 − d)p1 − αp21

ds1

dt
= λ(β1 − s1)− εµs1p1

...

dpi

dt
= Di,i−1pi−1 +Di,i+1pi+1 −Di−1,ipi −Di+1,ipi

+ γpi−1 max{pi − pi−1, 0} − γpi max{pi−1 − pi, 0}
+ γpi+1 max{pi − pi+1, 0} − γpi max{pi+1 − pi, 0}
+ νpi−1 max{si − si−1, 0} − νpi max{si−1 − si, 0}

+ νpi+1 max{si − si+1, 0} − νpi max{si+1 − si, 0}+ (µsi − d)pi − αp2i

dsi

dt
= λ(βi − si)− εµsipi

...

dpn

dt
= −Dn−1,npn +Dn,n−1pn−1 − γpn max{pn−1 − pn, 0}+ γpn−1 max{pn − pn−1, 0}

− νpn max{sn−1 − sn, 0}+ νpn−1 max{sn − sn−1, 0}+ (µsn − d)pn − αp2n

dsn

dt
= λ(βn − sn)− εµsnpn

(6)

Here Dij denotes the rate of diffusion from patch j into patch i (note that j = i− 1 or j = i+1),

γ denotes the strength of chemotactic bacterial self-aggregation, and ν the strength of bacterial

cueing upon relative substrate concentrations. The single patch parameters µ,d,λ and ε have the
same meanings as in the preceding section, as does also βi, except βi is allowed to vary from

patch to patch. As noted in the introduction, this feature reflects the design of the experimental
device in [6]; namely, it is possible to control the maximal available substrate concentration in

each patch. Finally, we find it convenient to replace 1/K by α in the bacterial logistic dynamics.

The parameters γ, ν, µ, d, ε and α reflect bacterial traits which can be reasonably considered as
independent of patch. Similar reasoning applies to λ relative to the substrate.

In the analysis that follows, we will set ν = 0 so as to focus primarily on bacterial self-
aggregation. Our motivation here is several-fold. First of all, when bacteria cue upon conspecific
density, it is not unreasonable to think of them indirectly cueing upon relative substrate concen-

tration. Second, a term such as

νpi max{si+1 − si, 0}

is bounded by νβi+1pi. Hence it is relatively insignificant as a dispersal term compared to the
linear movement terms if ν is small relative to the Dij independent of bacteria density. Such is
not the case with the bacterial self-aggregation. Thirdly, our analysis turns to a large extent on
the observation that the system with either form of chemotactic aggregation or both is irreducible

in the bacterial density. By this statement, we mean that if pi ≡ 0 for some i, it is identically zero

for all i. Such follows from the tridiagonal structure and the positivity of diffusion coefficients.
This feature can be regarded as akin to a maximum principle in a reaction-diffusion setting.

Consequently, we will focus only on the case with bacterial self-aggregation which we believe to

be interesting in and of itself.

4. Analysis I: General Diffusion Rates. We will give persistence results for the n-patch ana-

logue of (6) with ν = 0 under the assumption that the diffusion rates Dij (j = i− 1 or i+ 1) are

positive. Here, it is useful first to present the special case when n = 2 separately. To this end, we
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consider the model

dp1

dt
=(−D21p1 +D12p2)− γp1 max{p2 − p1, 0}

+ γp2 max{p1 − p2, 0}+ (µs1 − d)p1 − αp21

ds1

dt
=λ(β1 − s1)− εµs1p1

dp2

dt
=(D21p1 −D12p2)− γp2 max{p1 − p2, 0}

+ γp1 max{p2 − p1, 0}+ (µs2 − d)p2 − αp22

ds2

dt
=λ(β2 − s2)− εµs2p2

(7)

Here we are interested in the solution flow for (7) on the set X = {(p1, s1, p2, s2) : pi ≥ 0, 0 ≤
si ≤ βi, i = 1, 2}. Ultimately, our analysis of (7) on X relies on Theorem 4.5 of [9]. Thieme’s

result is an extension of the celebrated Acyclicity Theorem of persistence theory due to [5]. A key
hypothesis in Theorem 4.5 of [9] is that the solution flow for (7) is forward invariant on the set

X1 = {(p1, s1, p2, s2) : pi > 0, 0 < si < βi, i = 1, 2},

so we start our discussion with a verification of this fact.

Proposition 1. The solution flow for (7) is forward invariant on X1.

Proof. Suppose that (p1(t), s1(t), p2(t), s2(t)) is a solution of (7) with pi(0) > 0 and 0 < si(0) < βi

for i = 1, 2. Suppose that this solution does not remain in X1 for all t > 0. By continu-

ity, there is a smallest t1 > 0 so that (p1(t), s1(t), p2(t), s2(t)) ∈ X1 for 0 ≤ t < t1 with

(p1(t1), s1(t1), p2(t1), s2(t1)) ∈ ∂X1. In such case, either si(t1) = βi or 0 for at least one i
or pi(t1) = 0 for at least one i.

So consider

dsi

dt
= λ(βi − si)− εµsipi

Since si ≥ 0 and pi ≥ 0 on [0, t1], si is a subsolution of the problem

dz

dt
= λ(βi − z)

z(0) = si(0)

on [0, t1]. Hence si(t1) < βi. On the other hand, if we let Mi = max{pi(t) : t ∈ [0, t1]}, si is a

supersolution of

dw

dt
= λ

(
βi −

(
1 +

εµMi

λ

)
w

)
w(0) = si(0)

which guarantees that si(t1) > 0. So now consider the equation for p1. It is easy to see that p1 is

a supersolution of

dy

dt
= (µs1 − d−D21 − γmax{p2 − p1, 0})y − αy2

y(0) = p1(0)

Thus p1(t1) > 0. An analogous argument showing that p2(t1) > 0 leads us to conclude that
(p1(t1), s1(t1), p2(t1), s2(t1)) is not in ∂X1, a contradiction. So the solution flow is forward invari-

ant on X1.

Observe, for example, that if si(0) = βi and pi(0) > 0, then si(t) < βi for all t > 0. Conse-
quently, the solution flow of (7) is not forward invariant on ∂X1. The Acyclicity Theorem of [5]

would require such. It is one of the key insights of [9] to remove this requirement.

Next we show that the solution flow of (7) is asymptotically bounded or point dissipative. To this
end, observe that

d

dt
(p1 + p2) = (µs1 − d)p1 − αp21 + (µs2 − d)p2 − αp22

≤ ρ(p1 + p2)− α(p21 + p22)
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where ρ = max{µβ1 − d, µβ2 − d, 1}. Now (p1 + p2)2 ≤ 2(p21 + p22), which implies that

ρ(p1 + p2)− α(p21 + p22) ≤ ρ(p1 + p2)−
α

2
(p1 + p2)

2.

Consequently, given any σ > 0, there is a T = T (p1(0), p2(0)) such that

p1(t) + p2(t) ≤
2ρ

α
+ σ

for t ≥ T . In light of Proposition 1, this establishes

Proposition 2. Solutions of (7) are asymptotically bounded in X.

We observe that Propositions 1 and 2 extend in an analogous manner to the n-patch analogue
of (6) with ν = 0. We shall use this fact in the sequel as needed without further argument.
Verifying permanence or uniform persistence in (7) via Theorem 4.5 of [9] requires an understanding
of the flow of (7) restricted to the boundary of X1. Here effectively the boundary of X1 is having
si ≡ βi or pi ≡ 0 for i = 1 or i = 2. It is immediate that si ≡ βi for i = 1 or 2 implies that

pi ≡ 0. The tridiagonal structure of the model at the linear level forces pj ≡ 0 where j ̸= i. Having
pj ≡ 0 in turn implies that sj → βj as t → ∞. Consequently, the only element of w(∂X1) is
{(0, β1, 0, β2)} and the acyclicity requirement in Theorem 4.5 of [9] is automatic (again due to the

tridiagonal structure, which is analogous to having a maximum principle in a reaction-diffusion
model). So it becomes the case that (7) is permanent or uniformly persistent if and only if the
stable manifold of {(0, β1, 0, β2)}, denoted W s({(0, β1, 0, β2)}) ∩X1 = ∅. So we have:

Theorem 4.1. The system (7) is permanent (uniformly persistent) if and only if

W s({(0, β1, 0, β2)}) ∩X1 = ∅.

We now examine when Theorem 4.1 holds. We begin with some simple observations. Note
from (7) that

d(p1 + p2)

dt
= (µs1 − d)p1 + (µs2 − d)p2 − α(p21 + p22) (8)

If µβ1 − d < 0 and µβ2 − d < 0, we have by (8) that p1 + p2 is a subsolution of the initial value

problem

dz

dt
= cz

z(0) = p1(0) + p2(0)

where c = max{µβ1 − d, µβ2 − d} < 0. Consequently, for any initial data with pi(0) ≥ 0, we get
that p1 → 0 and p2 → 0 as t → ∞, which in turn implies that W s({(0, β1, 0, β2)}) ∩X1 ̸= ∅. On

the other hand, suppose that µβ1 − d > 0 and µβ2 − d > 0 and that (p1(t), s1(t), p2(t), s2(t)) →
(0, β1, 0, β2) for some initial data (p1(0), s1(0), p2(0), s2(0)) with pi(0) ≥ 0 and p1(0) + p2(0) > 0.
Then pi(t) > 0 and 0 < si(t) < βi for all t > 0 and for t sufficiently large, say t ≥ T1, p1 + p2 is a

supersolution of the initial value problem

dz

dt
= cz − αz2

z(T1) = p1(T1) + p2(T1),

where c is positive and less than min{µβ1 − d, µβ2 − d}.
Consequently, given any σ ∈ (0, c/α), there is a T2 > T1 so that p1(t) + p2(t) > c/α − σ for

all t ≥ T2. In particular, it is not possible for a solution of (7) starting in X1 to converge to
{(0, β1, 0, β2)}. So if µβ1 − d > 0 and µβ2 − d > 0, W s({(0, β1, 0, β2)}) ∩X1 = ∅. The upshot is

as follows. If both microhabitat patches are unfavorable, the bacteria goes extinct in both patches

over time, regardless of its dispersal pattern. On the other hand, if both patches are favorable, the
bacterial species persists in both, again regardless of its dispersal pattern. Consequently, the only

case in which dispersal behavior can have an impact on the asymptotic predictions of the model is
when we have so-called source sink dynamics, where in the growth rate µβi − d is positive in one

patch (meaning a favorable or source habitat) but negative in the other (meaning an unfavorable

or sink habitat).
So for the remainder of this section, we assume that µβ1 − d > 0 while µβ2 − d < 0. Assume

initially that there is no bacterial self-aggregation; i.e., γ = 0 in (7). In this case, the Hartman-

Grobman Theorem is applicable to enable us to decide whether or notW s({(0, β1, 0, β2)})∩X1 = ∅.
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The Jacobi matrix at (0, β1, 0, β2), J(0, β1, 0, β2) given by

J(0, β1, 0, β2) =


−D21 + µβ1 − d 0 D12 0

−εµβ1 −λ 0 0

D21 0 −D12 + µβ2 − d 0
0 0 −εµβ2 −λ

 (9)

We will use σ to denote the eigenvalues of J(0, β1, 0, β2) in (9). It is not difficult to see that

σ = −λ is a double eigenvalue (reflecting the restorative tendency of the substrate when bacterial
abundance is low) and the other eigenvalues of J(0, β1, 0, β2) are the eigenvalues of the matrix A

given by

A =

[
−D21 + (µβ1 − d) D12

D21 −D12 + (µβ2 − d)

]
. (10)

So the other two eigenvalues are given by

σ =
Tr ±

√
(Tr)2 − 4∆

2

where Tr = µ(β1+β2)−2d−(D12+D21) and ∆ = (µβ1−d)(µβ2−d)−D12(µβ1−d)−D21(µβ2−d)
are the trace and determinant of A. When D12 = D21 = 0, there is no dispersal between

microhabitat patches and we have persistence of the bacteria in patch 1 and extinction in patch 2.

Notice that when D12 = 0 = D21, ∆ < 0 while Tr could be of either sign. When D12 and D21 are
positive and small, ∆ remains negative. Consequently, J(0, β1, 0, β2) admits one positive eigenvalue

and we have that W s({(0, β1, 0, β2)})∩X1 = ∅, and the model predicts persistence of the bacteria

in both microhabitat patches. Here the subsidy from patch one rescues the bacterial population
in patch two, an example of source-sink dynamics at work. If Tr < 0 when D12 = 0 = D21, it

remains negative for all positive values of D12 and D21. If Tr > 0 when D12 = 0 = D21, it will
eventually become negative as D21 increases. By re-writing ∆ and Tr as

∆ = (µβ1 − d−D21)(µβ2 − d)−D12(µβ1 − d)

Tr = (µβ1 − d−D21) + (µβ2 − d−D12)

it is easy to see that ∆ remains negative as D21 increases until after the point at which Tr becomes

negative as D21 increases. It is also easy to see from the above that ∆ will become positive once
D21 is large enough. When this happens both eigenvalues of A have negative real parts and we

conclude that W s({(0, β1, 0, β2)}) ∩X1 ̸= ∅. Consequently, the bacteria from the first patch over
disperse to the second patch, effectively turning the first patch into a sink. The bacteria go extinct

in both patches if the density in patch 1 becomes too diminished.

So suppose now thatD12 > 0, D21 > 0 and γ > 0, so that we take bacterial self-aggregation into
account. Theorem 4.1 remains valid. Suppose that D21 is small enough so that µβ1−d−D21 > 0.

Let r1 and r2 be positive numbers so that

µ(β1 − r1)− d−D21 − r2 > 0

and suppose there is a solution of (7) with pi(0) > 0, si(0) ∈ (0, βi), i = 1, 2 so that (p1(t), s1(t), p2(t),
s2(t)) → (0, β1, 0, β2) as t → ∞. Choose T > 0 so that for t ≥ T ,

p1(t) < w <
µ(β1 − r1)− d−D21 − r2

α
s1(t) > β1 − r1

and

p2(t) <
r2

γ
.

Then

dp1

dt
=(−D21p1 +D12p2)− γp1 max{p2 − p1, 0}+ γp2 max{p1 − p2, 0}

+ (µs1 − d)p1 − αp21

≥−D21p1 − γp1 max{p2 − p1, 0}+ (µs1 − d)p1 − αp21.

Now max{p2 − p1, 0} ≤ p2. So −γp1 max{p2 − p1, 0} ≥ −γp1p2. Since p2 < r2/γ, we get that

−γp1 max{p2 − p1, 0} ≥ −r2p1.
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Hence we obtain that for t ≥ T ,

dp1

dt
≥ (µ(β1 − r1)− d−D21 − r2)p1 − αp21.

Consequently, p1(t) ≥ ρ(t), where ρ(t) is the solution of

dρ

dt
= (µ(β1 − r1)− d−D21 − r2)ρ− αρ2

on (T,∞) with ρ(T ) = p1(T ). Since ρ → µ(β1−r1)−d−D21−r2
α

as t → ∞, we get that p1(t) > w
for t ≫ T , a contradiction. So there can be no such orbit and thus

W s({(0, β1, 0, β2)}) ∩X1 = ∅.

So (7) remains permanent when γ > 0, D12 > 0 and D21 is positive and small.
When γ = 0 and D12 > 0 is fixed, (7) loses permanence when D21 becomes large enough so

that the determinant ∆ of A in (10) becomes positive. For γ > 0 and D12 > 0 and fixed, we

establish that (7) is not permanent for D21 sufficiently large via the following result.

Proposition 3. For γ > 0 and D12 > 0 fixed, (7) does not admit a componentwise positive

equilibrium for D21 sufficiently large.

Proof. Suppose (7) admits an equilibrium with pi > 0 and si ∈ (0, βi) for i = 1, 2. Then we have
that

D21p1 + γp1 max{p2 − p1, 0} − (µs1 − d)p1 + αp21 = (D12 + γmax{p1 − p2, 0})p2
which is equivalent to

D21 + γmax{p2 − p1, 0} − (µs1 − d) + αp1

= (D12 + γmax{p1 − p2, 0})
(
p2

p1

)
(11)

For the time dependent problem, we have

d

dt
(p1 + p2) ≤ (µβ1 − d)(p1 + p2)−

α

2
(p1 + p2)

2

so that p1 and p2 are ultimately bounded above by any number greater than [2(µβ1 − d)/α],

independent of the value of D21. Therefore, componentwise positive equilibria are bounded inde-

pendent of D21.
One easily observes that the left hand side of (11) tends to +∞ as D21 → +∞. So if we

have componentwise positive equilibria to (7) for arbitrarily large values of D21, the ratio p2/p1
must tend to +∞ as D21 → +∞, since D12 + γmax{p1 − p2, 0} is bounded independent of D21

(Dividing the equilibria equation for p1 by D21 shows that p1 → 0 as D21 → +∞ were there any

such solutions).
However, if we add the equations for p1 and p2 we get

0 = (µs1 − d)p1 − αp21 + (µs2 − d)p2 − αp22.

Thus

0 = (µs1 − d)− αp1 + (µs2 − d)
p2

p1
− α

p22
p1

which implies

[d− µs2 + αp2]

(
p2

p1

)
= µs1 − d− αp1.

Recall that µβ1 − d > 0 and µs2 − d ≤ µβ2 − d < 0. Consequently d− µs2 + αβ2 > 0 and we get

p2

p1
=

µs1 − d− αp1

d− µs2 + αp2
≤

µβ1 − d

d− µβ2

independent of D21. Consequently, (7) can have no equilibrium with p1 and p2 positive for
sufficiently large D21.

Propositions 1 and 2 and Theorem 4.1 extend to the analogues of (7) for an arbitrary number

of micro habitat patches, so that permanence or uniform persistence is determined by the stable
manifold of {(0, β1, 0, β2, ..., 0, βn)}. Indeed, we can readily obtain that the system is permanent

so long as µβi − d > 0, µβi − d − Di−1,i − Di+1,i > 0 for some i (with appropriate analogues if

i = 1 or n).
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So the situation of primary interest is when µβi − d > 0 for one value of i and negative for all
others. For the sake of specificity, assume µβ2 − d > 0 and µβi − d < 0 for i ̸= 2. Assuming a

componentwise positive equilibrium, we may argue as in Proposition 3 that

(D21 + γmax{p2 − p1, 0})
(
p1

p2

)
+ (D23 + γmax{p2 − p3, 0})

(
p3

p2

)
= D12 +D32 − (µs2 − d) + αp2.

Consequently, if D12 +D32 becomes large we get that p1/p2 or p3/p2 must become large. On the
other hand, adding all the p equations yields

0 =
n∑

i=1

(µsi − d)pi − α(
n∑

i=1

p2i )

which we can re-write as ∑
i̸=2

(d− µsi + αpi)

(
pi

p2

)
= (µs2 − d− αp2)

Since d− µsi + αpi > 0 then for each i ̸= 2, we get

pi

p2
≤

µs2 − d− αp2

d− µsi + αpi
≤

µβ2 − d

d− µβi
.

So there can not be permanence of the system if diffusion from patch 2 is too large. Again, the

interpretation is that patch 2 effectively becomes a sink instead of a source if D12 + D32 is too
large.

5. Analysis II: Equal Diffusion Rates. In this section we focus on the case where the diffusion

rates of the bacteria are everywhere equal. Our purpose is to highlight further the parallel between

the role of diffusion in our model as compared to its role in a reaction-diffusion analogue, such
as [7]. Again, we consider the case where exactly one patch is a source; i.e., where µβi − d > 0

for exactly one i. In parallel to [7], we will also assume that
∑n

i=1(µβi − d) < 0. The results
from the previous section when γ > 0 carry over when D (the common diffusion rate) is small and

may be framed as asserting the persistence of the bacteria in all MHP’s in that case. Here we will

take γ = 0 and consider the predictions of the model as D varies from 0 to ∞. What we observe

is that there is a critical value D̂ of D so that we get a prediction of persistence of bacteria in all

MHP’s when 0 < D < D̂ and extinction when D > D̂.
To this end, for the sake of specificity, we take µβ1 − d > 0 and µβi − d < 0 for i = 2, ..., n.

Let ai = |µβi − d| and assume that a1 − a2 − a3 − ...− an < 0. The predictions of the analogue

to Theorem 4.1 can be discerned via the eigenvalues of the matrix

A1(D) =


a1 −D D 0 . . . 0 0 0

D −a2 − 2D D . . . 0 0 0
...

. . .
...

0 0 0 . . . D −an−1 − 2D D
0 0 0 . . . 0 D −an −D


Since A1(D) is a real symmetric matrix, all of its eigenvalues are real. The main result of this

section is the following

Theorem 5.1. There is a unique positive number D̂ such that for 0 ≤ D < D̂ the matrix A1(D)

has only one positive eigenvalue. The multiplicity of this eigenvalue is one and the other eigen-

values are all negative. For D > D̂ the eigenvalues of A1(D) are all negative.

Remark 1. Since γ = 0, the Hartman-Grobman Theorem implies that W s({(0, β1, ..., 0, βn)}) ∩
X1 ̸= ∅ when D > D̂.

Before proving this result, we introduce some notation and make some preliminary observations.

We transform A1(D) by performing the following sequence of row operations: starting with row i =
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1 and ending with row n− 1, add row i to row i+ 1 which yields the matrix

B1(D) =



a1 −D D 0 . . . 0 0 0
a1 −a2 −D D . . . 0 0 0
a1 −a2 −a3 −D . . . 0 0 0

...
. . .

...
a1 −a2 −a3 . . . −an−2 −an−1 −D D

a1 −a2 −a3 . . . −an−2 −an−1 −an


Next we perform the following sequence of column operations: starting with column j = n and

ending with column 2, add column j to column j − 1. This yields the matrix

C1(D) =



a1 D 0 . . . 0 0
a1 − a2 −a2 D . . . 0 0

a1 − a2 − a3 −a2 − a3 −a3 . . . 0 0
...

. . .
...

cn−1,1 cn−1,2 cn−1,3 . . . −an−1 D

cn,1 cn,2 cn,3 . . . −an−1 − an −an


where cn,1 = a1 − a2 − a3 − · · · − an. Notice that the determinant is invariant under all these row
and column operations. Thus we have the following

Lemma 5.2. The polynomial p1(D) = detA1(D) = detC1(D) is of degree n− 1 in D and

p1(D) = (−1)n−1(a1 − a2 − a3 − · · · − an)D
n−1 + · · ·+ (−1)n−1a1a2 · · · an.

Proof. The constant term of p1 can easily be extracted by taking the determinant of the diagonal

matrix A1(0). To extract the highest degree term, consider the determinant as the sum over all
permutations of {1, . . . , n}.

detC1(D) =
∑

σ∈Sn

sgn(σ)
n∏

i=1

ci,σ(i)

and notice that since D does not appear in the last row, no term in this sum can be of degree

higher than n− 1. Further, the only term in this sum of degree n− 1 is

c1,2c2,3c3,4 · · · cn−1,ncn,1 = (a1 − a2 − a3 − · · · − an)D
n−1

and the corresponding permutation σ is the n-cycle (1, 2, 3, . . . , n) which is even if n is odd and

odd if n is even.

Notice that the lowest and highest degree terms of p1 have opposite signs. Hence p1 must have

at least one root in (0,∞). Another thing to observe: by the Gershgorin Circle Theorem, the
eigenvalues of A1(D) all lie in the union of intervals

[a1 − 2D, a1] ∪
n−1∪
j=2

[−aj − 4D,−aj ] ∪ [−an − 2D,−an].

Notice that this implies that all positive eigenvalues must lie in the interval (0, a1]. That leads to

the following

Lemma 5.3. Let D1 ≤ D2 be the smallest and largest positive roots of p1(D). Then for all D in
the interval [0, D1) the matrix A1(D) has exactly one positive eigenvalue. This eigenvalue is of

multiplicity one and all other eigenvalues are negative. Further, for all D in the interval (D2,∞)

all eigenvalues of A1(D) are all negative.

Remark 2. Theorem 5.1 follows once we show D1 = D2.

Proof. The diagonal matrix A1(0) has exactly one positive eigenvalue with the rest negative. Since

the eigenvalues of A1(D) are all real and depend continuously on D, as one increases D from zero
the positivity of one and the negativity of the rest of the eigenvalues can only change at a point

where their product, p1(D), passes through zero. Thus A1(D) must have the desired properties
for 0 ≤ D < D1.

Similarly, for D > D2 no eigenvalue of A1(D) can change sign. Since limD→∞ p1(D) = ∞
if n is even and limD→∞ p1(D) = −∞ if n is odd, positive eigenvalues of A1(D) in (D2,∞) must
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occur in pairs. Let j be the number of pairs of these positive eigenvalues and let λ1(D), . . . λ2j(D)
be the positive eigenvalues. Then by the Gershgorin Circle Theorem

|p1(D)| = |λ1(D) · · ·λ2j(D)λ2j+1(D) · · ·λn(D)| ≤ a2j1

(
max

2≤k≤n
(ak) + 4D

)n−2j

. (12)

By Lemma 5.2, p1(D) is of degree n− 1 in D while the right-hand side of (12) is of degree n− 2j

in D. But this can only be true for all D sufficiently large if j = 0.

As mentioned in the remark above, to complete the proof of Theorem 5.1, we must show that p1
has no more than one positive root. This would follow if p1 was monotone in D on (0,∞), but

there are counterexamples to this even when n = 2. To this point in this section, a subscript on A1

and p1 may seem like an unnecessary bit of notation, but we now consider some other matrices.
For 1 < k < n we define the principal minors of A1(D)

Ak(D) =


−ak − 2D D 0 . . . 0 0 0

D −ak+1 − 2D D . . . 0 0 0
...

. . .
...

0 0 0 . . . D −an−1 − 2D D
0 0 0 . . . 0 D −an −D


and take An(D) = (−an −D). Further, we define the polynomials pk by

pk(D) = detAk(D), 1 ≤ k ≤ n.

As with A1(D), by the Gershgorin Circle Theorem, for k > 1, the eigenvalues of the symmetric

matrices Ak(D) all lie in the union of intervals

n−1∪
j=k

[−aj − 4D,−aj ] ∪ [−an − 2D,−an]

and thus the eigenvalues of Ak(D) are all negative. Hence Ak(D) is negative definite (i.e. −Ak(D)

is positive definite). Finally it is convenient to introduce symmetric positive definite matri-

ces Âk(D), the negative of Ak(D) with the diagonal reversed. That is, for 1 < k < n

Âk(D) =


an +D −D 0 . . . 0 0 0

−D an−1 + 2D −D . . . 0 0 0
...

. . .
...

0 0 0 . . . −D ak+1 + 2D −D

0 0 0 . . . 0 −D ak + 2D


and Ân(D) = −An(D) = (an + D). Since flipping the diagonal of Ak can be accomplished with

an even total number of column and row swaps, we have

det(Ak(D)) = (−1)n−k+1 det(Âk(D))

Since the matrices Âk are positive definite, they each have a Cholesky factorization Rk. That is,

there exist upper triangular matrices Rk with positive diagonal entries such that

RT
k Rk = Âk.

Starting in the upper left corner, we let rn be the (only) entry of Rn and hence

r2n = an +D. (13)

Then for 2 < k ≤ n, by partitioning

Rk−1 =

(
R̄k vk−1

0 rk−1

)
we see that

Âk−1 = RT
k−1Rk−1 =

(
R̄T

k R̄k R̄T
k vk−1

vTk−1 R̄k vTk−1vk−1 + r2k−1

)
=

(
Âk b
bT ak−1 + 2D

)
where

bT =
[
0 0 . . . 0 −D

]
.

Thus we see that in fact R̄k = Rk, that

vTk−1 =
[
0 0 . . . 0 −D/rk

]
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and hence also that

D2/r2k + r2k−1 = ak−1 + 2D.

As mentioned above, p1 may not be strictly monotone for D > 0, but by expanding p1 along

the first column of A1 we see

p1(D) = (a1 −D)p2(D)−D2p3(D).

Since Â2(D) is positive definite for D ≥ 0, p2(D) is never zero there. We next consider the quotient

Q(D) =
p1(D)

p2(D)
= a1 −D −

D2 p3(D)

p2(D)
(14)

in our final

Lemma 5.4. The function Q is strictly decreasing on [0,∞) with Q(0) = a1 and

lim
D→∞

Q(D) = a1 − a2 − a3 − · · · − an.

In particular, Q has a unique root D̂ in [0,∞).

Remark 3. Since the roots of p1 and Q coincide for D > 0, this D̂ is the same as in Theorem 5.1
and is also D1 and D2 in Lemma 5.3. Thus Theorem 5.1 follows immediately from Lemma 5.4.

Proof. From (14) we consider

f2(D) = −
D2 p3(D)

p2(D)
−D

= −
D2 det(A3(D))

det(A2(D))
−D

=
D2 det(Â3(D))

det(Â2(D))
−D

=
D2 det(R3)2

det(R2)2
−D

=
D2 det(R3)2

det(R3)2r22
−D

=
D2

r22
−D

.

Recall from (13) that r2n = an +D. We use induction starting with

fn(D) =
D2

r2n
−D =

D2

D + an
−D =

−Dan

D + an
.

Notice that

f ′
n(D) =

−a2n
(D + an)2

< 0, for D ≥ 0.

Further, fn(0) = 0 and fn(D) → −an as D → ∞.
Assume that for 2 < k ≤ n

fk(D) =
D2

r2k
−D

satisfies

fk(D) < 0 for D > 0, (15)

f ′
k(D) < 0 for D ≥ 0, and (16)

fk(D) → −ak − ak+1 − · · · − an as D → ∞. (17)

Notice

fk−1(D) =
D2

r2k−1

−D

=
D2

ak−1 + 2D −D2/r2k
−D

=
D2

ak−1 +D − (D2/r2k −D)
−D
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=
D2

ak−1 +D − fk(D)
−D

=
D2 −D(ak−1 +D − fk(D))

ak−1 +D − fk(D)

=
−D(ak−1 − fk(D))

D + (ak−1 − fk(D)).

Hence

f ′
k−1(D) =

{
[−(ak−1 − fk(D)) +Df ′

k(D)][D + (ak−1 − fk(D))]

+D(ak−1 − fk(D))(1− f ′
k(D))

}
/
(
D + (ak−1 − fk(D))

)2
=

{
−D(ak−1 − fk(D))− (ak−1 − fk(D))2 +D2f ′

k(D) +Df ′
k(D)(ak−1 − fk(D))

+D(ak−1 − fk(D))−Df ′
k(D)(ak−1 − fk(D))

}
/
(
D + (ak−1 − fk(D))

)2
=

{
−(ak−1 − fk(D))2 +D2f ′

k(D)
}
/
(
D + (ak−1 − fk(D))

)2

which is negative for D ≥ 0. Since fk−1(0) = 0, fk−1(D) must be negative for D > 0. Thus (15)
and (16) of the induction hypothesis hold for fk−1. Finally

lim
D→∞

fk−1(D) = lim
D→∞

−ak−1 + fk(D)

1 + (ak−1 − fk(D))/D.
= −ak−1 − ak − · · · − an,

which completes the induction step. Notice that

Q(D) = a1 + f2(D).

and Lemma 5.4 follows. As mentioned above, this proves Theorem 5.1.

6. Numerical Investigations. We have shown in the preceding sections that if there is a single

source patch, the model predicts persistence of the bacteria in the micro-habitat patch array so
long as the diffusion rates are not too large. The model is spatially implicit, but the underlying

assumption that the array is linear (i.e. one must pass through patch i to get to patch (i + 1)
or patch (i − 1)) enables us to think of the number of patch spaces between two patches as a

surrogate for distance. In this section, we want to explore the asymptotic spatial arrangement of

the population equilibrium distribution. It is certainly reasonable to expect that the population
value in an MHP decreases as the bacteria is further away from a source patch, since it passes

through MHP’s that are net unfavorable. But it is interesting to consider how fast it decreases,

and how is this impacted by the variation in net unfavorability among the sink patches and by
the strength of the bacterial tendency to self-aggregate. In this section we explore numerically the

input that various features of the model (6) and its analogues have upon the predictions of the

models. We used the ode45 function in MATLAB to integrate numerically in the model. We begin
in Experiment 1 with the role of self-aggregation of bacteria, measured through the parameter γ.

We illustrate the role of bacterial self-aggregation in (6) with 5 microhabitat patches (MHP’s).
In (a) − (d) of Figure 1, all parameters except γ are fixed. Here Dij = D = 0.01, β1 = 0.2,

β2 = 0.2, β3 = 0.8, β4 = 0.02, β5 = 0.38, µ = 0.15, ε = 1.2, λ = 0.004, d = 0.06 and α = 0.002.

Only µβ3 − d > 0. γ varies across (a) − (d) with γ = 0 (a), γ = 4 (b), γ = 10 (c), γ = 50
(d). We see that increasing γ leads to an equilibrium distribution where the abundance of the

bacteria is increasingly concentrated in the source patch, patch 3. Consequently we can see that

self-aggregation works to concentrate bacteria in the favorable habitat.
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Figure 1. (Experiment 1) We illustrate the role of increasing the
bacterial self-aggregation parameter γ in Experiment 1. Here the
value of γ is: (a) 0, (b) 4, (c) 10 and (d) 50.

Experiment 2 considers a case where there are 7 microhabitat patches. The middle patch, patch
4, is favorable, meaning that µβ4 − d > 0, while µβi − d is negative for all other patches. Here

Dij = D = 0.01, µ = 0.15, ε = 1.2, λ = 0.004, d = 0.06, γ = 4 and α is now 0.00002. We explore

the interplay between implicit distance from the unique source patch and relative disparity among
maximal substrate input values. Here the βi’s are ordered with β1 < β2 < β3 < β4 > β5 > β6 >

β7. We hold β1, β2, β4, β6 and β7 fixed with β1 = 0.1, β2 = 0.12, β4 = 0.6, β6 = 0.04, β7 = 0.02
so that β1 = 5β7 and β2 = 3β6. We initially have β3 = 0.3 and β5 = 0.14. In this instance we get

p1 > p7, p2 > p6 and p3 > p5, much as we would expect. We gradually reduce β3 and increase

β5 till β3 = 0.14 and β5 = 0.3. When we have β3 = 0.2 and β5 = 0.24 so that β3 is now less
than β5, we get p3 < p5. However, at this point p2 remains larger than p6. By reducing β3 to

0.15 and increasing β5 to 0.29, we get that p3 < p5 and also p2 < p6, reflecting having sufficient

disparity between p3 and p5. At this point, p1 remains larger than p7, reflecting that β1 = 5β7.
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Such remains the case when β3 = 0.14 and β5 = 0.3. If we now keep β3 at 0.14, but increase β5

to 0.39 (just below the breakeven point 0.4 for µβ − d), we get p1 < p7.

Patch Number

1 2 3 4 5 6 7

(a) 0.0000589 0.000331 0.00187 0.0134 0.00139 0.000208 0.0000305

(b) 0.0000584 0.000307 0.00172 0.0133 0.00148 0.000219 0.0000324

(c) 0.0000530 0.000297 0.00165 0.0133 0.00153 0.000226 0.0000333

(d) 0.0000497 0.000278 0.00154 0.0133 0.00164 0.000242 0.0000356

(e) 0.0000470 0.000263 0.00144 0.0133 0.00178 0.000259 0.0000382

(f) 0.0000463 0.000259 0.00142 0.0134 0.00181 0.000264 0.0000389

(g) 0.0000457 0.000256 0.00140 0.0134 0.00185 0.000269 0.0000397

(h) 0.0000472 0.000264 0.00145 0.0145 0.00229 0.000326 0.0000478

Table 1. (Experiment 2) We display equilibrium values for the
model (6) with 7 MHP’s. Values of all parameters except β3 and
β5 are fixed as in the text. Values for (β3, β5) for each experiment
are: (a) (0.3, 0.14), (b) (0.26, 0.18), (c) (0.24, 0.2), (d) (0.2, 0.24),
(e) (0.16, 0.28), (f) (0.15, 0.29), (g) (0.14, 0.3), (h) (0.14, 0.39).

7. Conclusions. This paper has been inspired by the nano-ecology experiments on the bacterium
Escherichia coli by Keymer et al. described in [6] and the subsequent chemotactic reaction-

diffusion model developed and analyzed in [3] which was prompted by the experiments. Our main

aim was to model the system via an island-patch or discrete-diffusion system so as to capture
the discrete nature of the micro-habitat patches (MHPs) within the overall array of patches and

corridors. We also modified the formulation of logistic growth in the within-patch model so as to
allow for net negative growth rates in individual patches.

The linear nature of the array of MHPs results in a tri-diagonal system in which the bacteria

must pass through patch i in order to transit from patch i− 1 to patch i+1 or vice versa. Such a
highly connected system leads to a discrete diffusion model which is irreducible (with or without

the extenuating effect of chemotactic aggregation). The impact of irreducibility here is precisely

analogous to that of the maximum principle in a diffusive model in a continuous space setting.
The prediction of the model is either that the bacteria persist in all MHPs or that they tend

toward extinction in all patches. Moreover, one may use acyclicity results from persistence theory
to see that which alternative obtains is determined by whether the stable set of the equilibrium
with the bacteria absent contains any fully nontrivial initial configuration of the system (as in

Theorem 4.1). Such is a consequence of the Acyclicity Theorem of persistence theory via the
results of [9].

The model exhibits strong source-sink dynamics when resource flow into some MHPs is set

low enough so that a bacteria population is not sustainable in such patches in isolation. In such
instances, diffusive dispersal may serve as a rescuing mechanism. Indeed, if there is a single patch

in which the bacteria can survive in isolation (what we term a favorable patch), a slow rate of

diffusion from the favorable patch leads to coexistence in all patches. However, if the rate of
diffusion from the favorable patch is too high relative to diffusion into it from adjacent patches,

the rescue effect is insufficient and the bacteria tend to extinction in the system. Such is the case

whether or not there is bacterial self-aggregation in the system.
Of course, such a disparity in dispersal is not possible in the special but natural case when

the diffusion rates are the same in all patches. Here we consider the case when patch 1 is the
sole favorable patch and the overall habitat is unfavorable in the sense that the sum over all

patches of net growth rates is negative. This assumption is analogous to the assumption that

the integral of the growth rate is negative in [7]. In this case, when there is no bacterial self-
aggregation, persistance is equivalent to the instability of the bacteria absent equilibrium. We

show in Theorem 2 that there is a unique positive threshold value of the diffusion rate D so that

the bacteria absent equilibrium is unstable for diffusion rates below the threshold and stable for
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values above the threshold. Such is the case even though the determinant of the relevant Jacobi
matrix is not monotonic as a function of the diffusion rate.

Based on our numerical experiments, the effect of bacterial self-aggregation appears to be to
concentrate the population in favorable MHPs. In our two experiments, we consider the situation

where we have 5 and 7 patches wherein the middle patch is favorable while the overall environment

is net unfavorable in the sense we have described. The long term population density is positive in
all patches but trails off when one moves away from the favorable patch. As the self-aggregation

parameter is increased in Experiment 1 the disparity between the density in the favorable patch
and the density elsewhere becomes more and more pronounced. Experiment 2 suggests that the
interplay of patch “distance” and maximal substrate rates is nuanced. In the experiment, we kept

maximal substrate rates constant in patches 1, 2, 4, 6 and 7 and varied them in patches 3 and 5,

with β1 < β2 < β3 < β4 > β5 > β6 > β7, with β1 = 5β7 and β2 = 3β6, and with only µβ4−d > 0.
When β3 is considerably larger than β5, we found the equilibrium populations (the pi’s) match

the relations among the maximal substrate rates (the βi’s). As β3 decreases and β5 increases, we
first reverse the equilibrium sizes of p3 and p5. If the disparity between β3 and β5 is not too large,

it remains the case that p2 > p6 and p1 > p7, suggesting that the disparity in maximal substrate

rates (β1 = 5β7 and β2 = 3β6) is outweighing the feed from the inner most unfavorable patches
(p3 and p5). Once β3 is small enough relative to β5, we find that p2 < p6 even though β2 = 3β6.

If β3 is still further smaller than β5, p1 < p7, even though β1 = 5β7.
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